Video

Dr. Sartor on Mechanism of Action and Safety of Radium-223 in mCRPC

Oliver Sartor, MD, medical director of Tulane Cancer Center, discusses the mechanism of action of radium-223 dichloride (Xofigo) as well as its safety profile for the treatment of patients with metastatic castration-resistant prostate cancer (mCRPC).

Oliver Sartor, MD, medical director of Tulane Cancer Center, discusses the mechanism of action of radium-223 dichloride (Xofigo) as well as its safety profile for the treatment of patients with metastatic castration-resistant prostate cancer (mCRPC).

Radium-223 has a unique mechanism of action in that it binds to hydroxyapatite and radiates the tumor microenvironment. Though the mechanism of action is not yet fully understood by researchers, Sartor says it could have pro-immune effect, anti-angiogenic effect, and/or a microenvironmental effect on tumors.

Grade 3/4 thrombocytopenia is one treatment-related adverse event associated with radium-223. Less common and lower grade adverse events include anemia, leukopenia, diarrhea, and fatigue, he says.

Related Videos
Cedric Pobel, MD
Ruth M. O’Regan, MD
Michael R. Grunwald, MD, FACP
Peter Forsyth, MD
John N. Allan, MD
Dr Dorritie on the Clinical Implications of the 5-Year Follow-Up Data From CAPTIVATE in CLL/SLL
Minoo Battiwalla, MD, MS
Kathleen N. Moore, MD, MS
Paolo Caimi, MD
Dr Oveisi on the Importance of Patient Counseling Prior to CAR T-Cell Therapy in Myeloma