Publication

Article

Contemporary Oncology®

Summer 2013
Volume5
Issue 2

Novel Proteasome Inhibitors for Multiple Myeloma

Multiple new proteasome inhibitors currently in clinical or preclinical development bode well for potential future therapies for multiple myeloma, both in frontline and relapsed or refractory settings.

Abstract

The recent approval of the second-generation proteasome inhibitor carfilzomib by the FDA comes nine years after the initial approval of bortezomib, the first-in-class drug of its type. Not only does carfilzomib demonstrate activity in a relapsed and refractory setting, it has a superior toxicity profile as well. Multiple new proteasome inhibitors currently in clinical or preclinical development bode well for potential future therapies for multiple myeloma, both in frontline and relapsed or refractory settings.

The recent significant improvements in overall survival and remission duration in multiple myeloma (MM) are largely due to the advent of novel therapeutic agents, including immunomodulatory drugs (IMiDs) and proteasome inhibitors (PIs).1 Proteasomes serve an important cellular function in enabling clearance of abnormal or mutant proteins.2 Tumor cells are more heavily dependent on this clearance mechanism and are sensitive to proteasome inhibition, leading to an antiproliferative and proapoptotic effect mediated via induction of endoplasmic reticulum stress, activation of caspases, and reactive oxygen species.2

For many years, bortezomib (Velcade), an intravenous/subcutaneous dipeptide boronate PI, was the only available agent in its class. Bortezomib is a reversible inhibitor of the chymotrypsin-like catalytic activity of the β5 subunit of the 20S mammalian proteasome. It was initially approved by the FDA in 2003 for refractory MM, and subsequently expanded for use in combination therapy in the first-line setting.3 Bortezomib therapy in MM is limited by development of peripheral neuropathy and eventual drug resistance4 mediated via overexpression of the β5 subunit, mutation of active drug binding sites, or downstream upregulation of survival pathways.

This mandates development of novel agents that retain activity in a multi-agent refractory setting and are easy to administer (orally vs intravenous) and tolerate. This review will address the current clinical development and results with second-generation PIs including carfilzomib, oprozomib (ONX 0912), ixazomib (MLN9708), marizomib (NPI-0052), and delanzomib (CEP-18770) (Table 1). They have a distinct mechanism of action as well as pharmacokinetic profile compared with bortezomib. Of these, carfilzomib has been recently approved by the FDA, and it and the others are being investigated in clinical trials (Table 2 5-14).

Table 1.Second-Generation Proteasome Inhibitors

Drug

Company

Binding

Route

Status

Carfilzomib

(Kyprolis)

Onyx Pharmaceuticals

Irreversible

IV

FDA-approved for multiple myeloma

Oprozomib

(ONX 0912)

Onyx Pharmaceuticals

Irreversible

Oral

Phase I

Ixazomib citrate

(MLN9708)

Millennium Pharmaceuticals

Reversible

IV, Oral

Phase I/II

Marizomib

(NPI-0052)

Nereus Pharmaceuticals

Irreversible

Oral

Phase I

Delanzomib

(CEP-18770)

Cephalon Inc.

Reversible

Oral

Phase I

Carfilzomib (Kyprolis, PR-171), is an intravenous, irreversible tetrapeptide epoxyketone second-generation PI. The irreversible binding and higher affinity for proteasome translates into superior biological activity and cytotoxicity in bortezomibresistant cell lines in vitro and in vivo.15,16 It was approved by the FDA on July 20, 2012, for treatment of patients with MM who have received at least two prior therapies, including bortezomib and a IMiD, and have demonstrated disease progression within 60 days of completion of last therapy.17 The FDA approval was based on a phase II study of 266 patients that demonstrated a response rate of 23.7%, median response duration of 7.8 months, and median overall survival of 15.6 months.18

The current carfilzomib administration schedule consists of intravenous (IV) dosing of 20 mg/m2 for cycle 1 concurrently with IV fluids for hydration and dexamethasone, and subsequent dose escalation to 27 mg/m2 if cycle 1 was well tolerated.18 It is anticipated that the administration will be further simplified, especially in a frontline setting, as well as dose escalation to 36 or 45 mg/m2, with higher doses currently being studied.

The side effects with single-agent carfilzomib were generally mild, with largely nonhematologic side effects, as well as a clear superiority over bortezomib in terms of peripheral neuropathy. In fact, patients with preexisting neuropathy did not have worsening symptoms with carfilzomib. As with development of bortezomib, carfilzomib is also being tested in combination chemotherapy and in frontline settings (Table 2). Clinical trials evaluating first-line use of carfilzomib may be especially relevant for patients who have significant preexisting peripheral neuropathy, and are therefore not good candidates for bortezomib.

Table 2. Selected Clinical Trials with Second-Generation Proteasome Inhibitors

Drug

Clinical Trial

Phase

Study Design

Study Population

Carfilzomib

(PR-171)

CYCLONE5

I/II

Cy + C + T + D

Newly diagnosed MM

ENDEAVOR6

III

C + d vs Bor + d

Relapsed MM after at least 1 prior therapy

ASPIRE7

III

R + d + C vs R + d

Relapsed MM patients who have received 1 to 3 prior therapies

FOCUS8

III

Single-agent C vs placebo

Relapsed and refractory MM patients who have received 3 or more prior therapies

Ixazomib

(MLN9708)

NCT012179579

I/II

MLN9708 + R + d

Newly diagnosed MM

NCT0156453710

III

MLN9708 + R + d/D vs placebo + R + d/D

Relapsed and/or refractory MM

Delanzomib

(CEP-18770)

NCT0134891911

I/II

CEP-18770 + R + d

Relapsed or refractory MM

Oprozomib

(ONX 0912)

NCT0141642812

Ib/II

Single-agent ONX 0912

Relapsed or refractory MM

NCT0183272713

Ib/II

ONX 0912 + d

Relapsed or refractory MM

Marozomib

(NPI-0052)

NCT0046104514

I

Single-agent NPI-0052

Relapsed or refractory MM

Bor indicates bortezomib; C, carfilzomib; Cy, cyclophosphamide; d, dexamethasone low-dose; D, dexamethasone high-dose; MM, multiple myeloma; R, lenalidomide; T, thalidomide.

Ixazomib citrate (MLN9708) is a reversible, oral/intravenous boronate peptide PI,19 currently being tested in clinical trials. Although it is a boronic acid-containing molecule like bortezomib, it is pharmacokinetically distinct with faster dissociation from the 20S proteasome, leading to superior tissue penetration and biological activity.20 In plasma, it hydrolyzes quickly into its biologically active form MLN2238, which activates proapoptotic enzymes, including caspase-3, caspase-8, and caspase-9; induces endoplasmic reticulum stress; and inhibits nuclear factor-kB (NF-kB) and tumor-associated angiogenic activity.19 Preclinical studies showed synergistic activity with lenalidomide and dexamethasone and formed the basis of recent clinical trials with MLN9708.20

Two phase I trials with expansion cohorts have been conducted with single-agent MLN9708.21,22 The first trial involved administration of MLN9708 on a twice-weekly basis (days 1, 4, 8, 11) of a 21-day cycle.21 In the second trial, MLN9708 was administered once weekly for 3 out of 4 weeks.22 The drug was well tolerated, with gastrointestinal and hematologic adverse events being the most common. Skin rash has been seen, especially in combination with lenalidomide. Clinical efficacy was clearly demonstrated in both trials, especially at the higher doses, with some patients achieving a very good partial response (VGPR) to therapy.

Subsequently, the phase I/II study consisting of 65 patients treated with weekly MLN9708 in combination with lenalidomide and dexamethasone revealed a VGPR rate of 44% or more, a complete response (CR) rate of 26%, and an overall response rate (ORR) of 88%.23 Treatment was well tolerated with largely nonhematologic side effects without significant neurotoxicity. MLN9708 is being explored in combination with other agents in phase II/III trials.9,10 The synergistic activity of MLN9708 and suberoylanilide hydroxamic acid (SAHA), a histone deacetylase inhibitor (HDAC), provides the rationale for future clinical trials incorporating these two agents.19

Oprozomib (ONX 0912) is an oral, irreversible, tripeptide epoxyketone that exerts its activity via inhibition of chymotrypsin- like activity of the proteasome.24 Biochemically, it is the oral analogue of carfilzomib, and demonstrates similar antiangiogenic and proapoptotic activity in vitro and in vivo.24 A synergistic effect with bortezomib and with a combination of lenalidomide and dexamethasone was also seen in preclinical studies, and hypothesized to be secondary to differential effects on proapoptotic signaling pathways.24 The primary advantage with oprozomib is the ease of administration via the oral route. The strong preclinical data for equipotent efficacy to carfilzomib has laid the groundwork for clinical trials. Oprozomib is being evaluated as a single agent and in combination with lowdose dexamethasone in relapsed and refractory MM.12,13

Other PIs of interest include marizomib and delanzomib. Marizomib (NPI-0052) is an oral, irreversible β-lactone derivative that binds selectively to the active proteasomal sites.25 In vivo studies with marizomib demonstrate reduced tumor growth without significant toxicity in myeloma xenograft models.26 A phase I trial in refractory and relapsed MM is under way.14 Delanzomib (CEP-18770) is an oral/intravenous, reversible boronate peptide agent.27 Piva et al28 demonstrated equivalent antiproliferative activity of delanzomib and bortezomib in MM cell lines and xenograft models. The effects of delanzomib were mediated via down-regulation of NF-kB, sustained inhibition of the proteasome, and potent antiangiogenic activity.28 A higher tumoral concentration of delanzomib was achieved in preclinical studies when compared with bortezomib. A phase I trial consisting of 38 patients encouragingly revealed a lack of neurotoxicity that is commonly associated with bortezomib.27 It is being evaluated in phase I/II studies at this time.11 Other promising agents in preclinical development include immunoproteasome inhibitors such as PR-92429 and ISPI-101.30

Conclusion

The second-generation PIs offer advantages over bortezomib either via ease of administration (oral agents such as oprozomib, ixazomib, marizomib, and delanzomib) or via abrogating bortezomib-resistant disease with stronger or irreversible binding to the proteasome (carfilzomib, oprozomib, and marizomib). The advantage of the nonpeptide PI (marizomib) is its inherent resistance to degradation by endogenous plasma and cellular peptidases resulting in increased bioavailability. Whether this will translate to increased efficacy remains unproven at this time.

Second-generation PIs have demonstrated single-agent efficacy in patients with refractory disease and provide therapeutic options for continued care. The newer agents have potentially less toxicity to the progenitor stem cells and normal cells than existing therapies.

Future research includes incorporation of these agents into multiagent chemotherapy and upfront use as part of induction therapy. In this regard, carfilzomib is already being tested in first-line settings. The incorporation of novel PIs as part of upfront multiagent therapy is under way. Whether these agents will be effective in high-risk patients remains unknown. There is laboratory evidence that the epoxyketone-based PIs have additional antiresorptive and bone-anabolic effects,31 which should be explored in future clinical trials.

ABOUT THE AUTHORS

Affiliation:

Vinay Gupta, MD; Wilson I. Gonsalves, MD; and Shaji K. Kumar, MD, are in the Department of Hematology at the Mayo Clinic in Rochester, MN.

Disclosures:

The authors report no financial interest with any entity that would pose a conflict of interest with the subject matter of this article.

Address correspondence to:

Shaji K. Kumar, MD, Department of Hematology, Mayo Clinic, 200 First St SW, Rochester, MN 55905. E-mail: kumar.shaji@mayo.edu.

REFERENCES

  1. Kumar SK, Rajkumar SV, Dispenzieri A, et al. Improved survival in multiple myeloma and the impact of novel therapies. Blood. 2008;111:2516-2520.
  2. Hideshima T, Richardson PG, Anderson KC. Mechanism of action of proteasome inhibitors and deacetylase inhibitors and the biological basis of synergy in multiple myeloma. Mol Cancer Ther. 2011;10:2034-2042.
  3. Kane RC, Farrell AT, Sridhara R, Pazdur R. United States Food and Drug Administration approval summary: bortezomib for the treatment of progressive multiple myeloma after one prior therapy. Clin Cancer Res. 2006;12:2955-2960.
  4. Kumar SK, Lee JH, Lahuerta JJ, et al. Risk of progression and survival in multiple myeloma relapsing after therapy with IMiDs and bortezomib: a multicenter International Myeloma Working Group study. Leukemia. 2012;26:149-157.
  5. Clinicaltrials.gov identifier: NCT01057225.
  6. Clinicaltrials.gov identifier: NCT01568866.
  7. Clinicaltrials.gov identifier: NCT01080391.
  8. Clinicaltrials.gov identifier: NCT01302392.
  9. Clinicaltrials.gov identifier: NCT01217957.
  10. Clinicaltrials.gov identifier: NCT01564537.
  11. Clinicaltrials.gov identifier: NCT01348919.
  12. Clinicaltrials.gov identifier: NCT01416428.
  13. Clinicaltrials.gov identifier: NCT01832727.
  14. Clinicaltrials.gov identifier: NCT00461045.
  15. Kuhn DJ, Chen Q, Voorhees PM, et al. Potent activity of carfilzomib, a novel, irreversible inhibitor of the ubiquitin-proteasome pathway, against preclinical models of multiple myeloma. Blood. 2007;110: 3281-3290.
  16. Kortuem KM, Stewart AK. Carfilzomib. Blood. 2013;121:893-897.
  17. Siegel DS, Martin T, Wang M, et al. A phase 2 study of single-agent carfilzomib (PX-171-003-A1) in patients with relapsed and refractory multiple myeloma. Blood. 2012;120:2817-2825.
  18. Chauhan D, Tian Z, Zhou B, et al. In vitro and in vivo selective antitumor activity of a novel orally bioavailable proteasome inhibitor MLN9708 against multiple myeloma cells. Clin Cancer Res. 2011;17:5311-5321.
  19. Kupperman E, Lee EC, Cao Y, et al. Evaluation of the proteasome inhibitor MLN9708 in preclinical models of human cancer. Cancer Res. 2010;70:1970-1980.
  20. Kumar S, Bensinger WI, Reeder CB, et al. Weekly dosing of the investigational oral proteasome inhibitor MLN9708 in patients with relapsed and/or refractory multiple myeloma: results from a phase 1 dose-escalation study. Blood. 2011;118(21). Abstract 816.
  21. Richardson PG, Baz R, Wang L, et al. Investigational agent MLN9708, an oral proteasome inhibitor, in patients with relapsed and/or refractory multiple myeloma: results from the expansion cohorts of a phase 1 doseescalation study. Blood. 2011;118(21). Abstract 301.
  22. Kumar SK. A phase 1/2 study of weekly MLN9708, an investigational oral proteasome inhibitor, in combination with lenalidomide and dexamethasone in patients with previously untreated multiple myeloma. Blood. 2012;120(21). Abstract 332.
  23. Chauhan D, Singh AV, Aujay M, et al. A novel orally active proteasome inhibitor ONX 0912 triggers in vitro and in vivo cytotoxicity in multiple myeloma. Blood. 2010;116:4906-4915.
  24. C Potts B, X Albitar M, C Anderson K, et al. Marizomib, a proteasome inhibitor for all seasons: preclinical profile and a framework for clinical trials. Curr Cancer Drug Targets. 2011;11:254-284.
  25. Singh AV, Palladino MA, Lloyd GK, Potts BC, Chauhan D, Anderson KC. Pharmacodynamic and efficacy studies of the novel proteasome inhibitor NPI-0052 (marizomib) in a human plasmacytoma xenograft murine model. Br J Haematol. 2010;149:550-559.
  26. Gallerani E, Zucchetti M, Brunelli D, et al. A first in human phase I study of the proteasome inhibitor CEP-18770 in patients with advanced solid tumours and multiple myeloma. Eur J Cancer. 2013;49:290-296.
  27. Piva R, Ruggeri B, Williams M, et al. CEP-18770: a novel, orally active proteasome inhibitor with a tumor-selective pharmacologic profile competitive with bortezomib. Blood. 2008;111:2765-2775.
  28. Singh AV, Bandi M, Aujay MA, et al. PR-924, a selective inhibitor of the immunoproteasome subunit LMP-7, blocks multiple myeloma cell growth both in vitro and in vivo. Br J Haematol. 2011;152:155-163.
  29. Kuhn DJ, Hunsucker SA, Chen Q, Voorhees PM, Orlowski M, Orlowski RZ. Targeted inhibition of the immunoproteasome is a potent strategy against models of multiple myeloma that overcomes resistance to conventional drugs and nonspecific proteasome inhibitors. Blood. 2009;113:4667- 4676.
  30. Hurchla MA, Garcia-Gomez A, Hornick MC, et al. The epoxyketone-based proteasome inhibitors carfilzomib and orally bioavailable oprozomib have anti-resorptive and bone-anabolic activity in addition to anti-myeloma effects. Leukemia. 2013;27:430-440.

Related Videos
Douglas W. Sborov, MD, MS
Meletios (Thanos) Dimopoulos, MD, professor, therapeutics, Hematology Oncology, National and Kapodistrian University of Athens School of Medicine
Michel Delforge, MD, PhD
Ashraf Z. Badros, MBCHB, professor, medicine, Medical Oncology, Hematology Oncology, University of Maryland Medical System
Binod Dhakal, MD
Michel Delforge, MD, PhD, professor, Faculty of Medicine, Department of Hematology, director, member, Leuven Cancer Institute, member, Senior Academic Staff, Council of the Faculty of Medicine, Council of the Department of Oncology, University Hospital Leuven, University of Leuven
Ajay K. Nooka, MD, MPH, FACP
Meletios A. Dimopoulos, MD
Binod Dhakal, MD
In this final episode of OncChats: Optimizing the Use of Bispecific Antibodies in Myeloma and Beyond, Drs Usmani and Wasil, discuss plans for developing guidelines and policies to enhance management of bispecific T-cell engagers across various centers.